首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   4篇
  国内免费   1篇
大气科学   1篇
地球物理   34篇
地质学   52篇
海洋学   6篇
天文学   10篇
综合类   1篇
自然地理   2篇
  2021年   2篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   6篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   5篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   6篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
  1963年   1篇
  1962年   1篇
  1951年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
11.
Yagi  K.  Onuma  K. 《Bulletin of Volcanology》1978,41(4):466-472
Bulletin of Volcanology - The possibility of formation of nephelinite magma from picrite magma by separation of eclogitic fraction is discussed from experimental results on some picritic rocks....  相似文献   
12.
The pressure dependence of the three lattice parameters and unit cell volume of fayalite (Fe2SiO4 olivine) was determined by X-ray diffraction under hydrostatic pressures up to 70 kbar. In order to eliminate stress inhomogeneity within a composite material consisting of a specimen mixed with an internal-pressure standard, a liquid (1 : 1 mixture of ethanol and methanol) was used as a pressure-transmitting medium. The isothermal bulk modulus calculated on the basis of the second-order Birch-Murnaghan equation of state gives the values K0 = 1.19 ± 0.10 Mbar and K0′ = 7 ± 4, and if we assume K0′ = 5: K0 = 1.24 ± 0.02 Mbar. Three axes of fayalite were found to be compressible in the following order, b >c >a. Comparisons with the results obtained under non-hydrostatic compression are made.  相似文献   
13.
The behaviour of tetrahedrally coordinated and octahedrally coordinated Cr3+ ions in diopside is discussed from the study on the join CaMg-Si2O6-CaCrCrSiO6. The molecule CaCrCrSiO6 decomposes into uvarovite+eskolaite and its maximum solubility in diopside is 6.7 wt percent at 940 ° C. Crystalline phases are diopside ss (ss is abbreviation of solid solution), uvarovite ss, wollastonite ss, spinel and eskolaite. The diopside ss is blue in colour. Its optical spectra were measured in the wavelenght range of 325–2600 nm, and assigned after tetrahedral configuration Td and octahedral configuration Oh. It is estimated that octahedral Cr3+ ions are in high spin state, while tetrahedral Cr3+ ions may be probably in low spin state. The t and B are 10,300–10,370 cm–1 and 429–432 cm–1. The CFSE for tetrahedral low spin Cr3+ ions is nearly the same as that for octahedral high spin Cr3+ ions. The ionic radii of tetrahedral low spin Cr3+ ions calculated are 0.47–0.53 Å, shrinked from the radius of octahedral high spin Cr3+ ion (0.615 Å) as much as 14–24 percent. Petrologic implications of the result are also discussed.The first half of the D. Sc. dissertation of K. Ikeda presented to Hokkaido University in June, 1976  相似文献   
14.
Dacitic magma, a mixture of high-temperature (T) aphyric magma and low-T crystal-rich magma, was erupted during the 1991–1995 Mount Unzen eruptive cycle. Here, the crystallization processes of the low-T magma were examined on the basis of melt inclusion analysis and phase relationships. Variation in water content of the melt inclusions (5.1–7.2 wt% H2O) reflected the degassing history of the low-T magma ascending from deeper levels (250 MPa) to a shallow magma chamber (140 MPa). The ascent rate of the low-T magma decreased markedly towards the emplacement level as crystal content increased. Cooling of magma as well as degassing-induced undercooling drove crystallization. With the decreasing ascent rate, degassing-induced undercooling decreased in importance, and cooling became more instrumental in crystallization, causing local and rapid crystallization along the margin of the magma body. Some crystals contain scores of melt inclusions, whereas there are some crystals without any inclusions. This heterogeneous distribution suggests the variation in the crystallization rate within the magma body; it also suggests that cooling was dominant cause for melt entrapment. Numerical calculations of the cooling magma body suggest that cooling caused rapid crystal growth and enhanced melt entrapment once the magma became a crystal-rich mush with evolved interstitial melt. The rhyolitic composition of melt inclusions is consistent with this model.Editorial responsibility: H Shinohara  相似文献   
15.
Although many petrological studies of volcanic rocks have suggested that crystallization proceeds within magma bodies, highly compatible trace elements do not display the marked variations and extreme depletions predicted to result from perfect fractional crystallization. Imperfect crystal-liquid separation is a key process in explaining this paradox. The presence of suspended crystals greatly affects variations in highly compatible elements, and has been quantitatively modeled by assuming perfect equilibrium between the suspended crystals and the liquid (equilibrium crystallization and imperfect separation; ECIS); however, volcanic rocks generally contain zoned phenocrysts that reflect the absence of solid-state equilibration. The present study develops a mass-balance model for zoned crystallization and imperfect separation (ZCIS). The ZCIS process is more efficient than the conventional ECIS process in generating depleted compatible elements. These two end-member models are able to explain the compositional range of igneous rocks that experienced imperfect fractional crystallization under natural conditions. The predicted compositional regions in bivariate trace-element diagrams successfully account for the sizes and shapes of the regions defined by whole-rock and melt-inclusion data from the Bishop Tuff, CA, USA.  相似文献   
16.
X-ray diffraction measurements of distorted rutile-type oxyhydroxides β-GaOOH, InOOH, β-CrOOH, and β-CrOOD were taken at a maximum pressure of up to 35 GPa under quasi-hydrostatic conditions, at ambient temperature. Anomalies in the evolution of the relative lattice constants and the axial ratios of β-GaOOH, InOOH, and β-CrOOD suggest anisotropic stiffening along the a- and/or b-axes where the hydrogen bond is formed. The changes were observed at 15 GPa in β-GaOOH and InOOH and at 4 GPa in β-CrOOD. The pressures were higher in oxyhydroxides that have longer O…O distances of the hydrogen bond at ambient pressure. In contrast, such stiffening behavior was not observed in CrOOH, which has a significant short O…O distance and strong hydrogen bond. The stiffening behaviors observed in the present study can be attributed to the symmetrization of the hydrogen bonds in oxyhydroxides, as was previously found in δ-AlOOH(D).  相似文献   
17.
Compression behaviors of CaIrO3 with perovskite (Pv) and post-perovskite (pPv) structures have been investigated up to 31.0(1.0) and 35.3(1) GPa at room temperature, respectively, in a diamond-anvil cell with hydrostatic pressure media. CaIrO3 Pv and pPv phases were compressed with the axial compressibility of β a > β c > β b and β b > β a > β c, respectively and no phase transition was observed in both phases up to the highest pressure in the present study. The order of axial compressibility for pPv phase is consistent with the crystallographic consideration for layer structured materials and previous experimental results. On the other hand, Pv phase shows anomalous compression behavior in b axis, which exhibit constant or slightly expanded above 13 GPa, although the applied pressure remained hydrostatic. Volume difference between Pv and pPv phases was gradually decreased with increasing pressure and this is consistent with the results of theoretical study based on the ab initio calculation. Present results, combined with theoretical study, suggest that these complicate compression behaviors in CaIrO3 under high pressure might be caused by the partially filled electron of Ir4+. Special attention must be paid in case of using CaIrO3 as analog materials to MgSiO3, although CaIrO3 exhibits interesting physical properties under high pressure.  相似文献   
18.
The phase relations and compression behavior of MnTiO3 perovskite were examined using a laser-heated diamond-anvil cell, X-ray diffraction, and analytical transmission electron microscopy. The results show that MnTiO3 perovskite becomes unstable and decomposes into MnO and orthorhombic MnTi2O5 phases at above 38 GPa and high temperature. This is the first example of ABO3 perovskite decomposing into AO + AB2O5 phases at high pressure. The compression behavior of volume, axes, and the tilting angle of TiO6 octahedron of MnTiO3 perovskite are consistent with those of other A2+B4+O3 perovskites, although no such decomposition was observed in other perovskites. FeTiO3 is also known to decompose into two phases, instead of transforming into the CaIrO3-type post-perovskite phase and we argue that one of the reasons for the peculiar behavior of titanate is the weak covalency of the Ti–O chemical bonds.  相似文献   
19.
Takashikozo is a phenomenon of Quaternary sediments in Japan. They are cylindrical Fe-oxyhydroxide nodules that form as plaques round plant roots, where Fe is preferentially concentrated to develop a solid wall. Structural features suggest that after the roots have decayed, the central space where the roots were situated acts as a flow path for oxidized water. Analysis of microbial 16S rDNA extracted from the nodules identified iron-oxidizing bacteria encrusted round the roots where they are the likely initiators of nodule formation. Direct microscopic observation revealed an accumulation of Fe-oxyhydroxides that fill the pore spaces and is also likely to be linked with the encrusting microbial colonies. Geological history and nanofossil evidence suggest that these Fe-nodules may have been buried at a depth of up to several tens of meters for at least 105 years in reducing Quaternary sediments. Thus Fe-oxyhydroxide nodules that have formed in a geological environment at the interfaces between water and rock by microbial mediation can persist under reducing conditions. If this is the case, the phenomenon is significant as an analogue of post-closure conditions in radioactive waste repositories, since it could influence nuclide migration.  相似文献   
20.
In this study, an integrated multi-channel analysis of Surface Waves (MASW) technique is applied to explore the geotechnical parameters of subsurface layers at the Zafarana wind farm. Moreover, a seismic hazard procedure based on the extended deterministic technique is used to estimate the seismic hazard load for the investigated area. The study area includes many active fault systems along the Gulf of Suez that cause many moderate and large earthquakes. Overall, the seismic activity of the area has recently become better understood following the use of new waveform inversion method and software to develop accurate focal mechanism solutions for recent recorded earthquakes around the studied area. These earthquakes resulted in major stress-drops in the Eastern desert and the Gulf of Suez area. These findings have helped to reshape the understanding of the seismotectonic environment of the Gulf of Suez area, which is a perplexing tectonic domain. Based on the collected new information and data, this study uses an extended deterministic approach to re-examine the seismic hazard for the Gulf of Suez region, particularly the wind turbine towers at Zafarana Wind Farm and its vicinity. Alternate seismic source and magnitude-frequency relationships were combined with various indigenous attenuation relationships, adapted within a logic tree formulation, to quantify and project the regional exposure on a set of hazard maps. We select two desired exceedance probabilities (10 and 20 %) that any of the applied scenarios may exceed the largest median ground acceleration. The ground motion was calculated at 50th, 84th percentile levels for both selected probabilities of exceeding the median.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号